jueves, 10 de febrero de 2011

DISCO DURO

ESTRUCTURA FISICA



Dentro de un disco duro hay uno o varios platos (entre 2 y 4 normalmente, aunque hay hasta de 6 ó 7 platos), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.
Cada plato posee dos caras, y es necesaria una cabeza de lectura/escritura para cada cara. Si se observa el esquema Cilindro-Cabeza-Sector de más abajo, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire que se forma entre éstas y los platos cuando éstos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 pulgadas).


ORGANIZACIÓN DE LA INFORMACIÓN
Hay varios conceptos para referirse a zonas del disco:
  • Plato: cada uno de los discos que hay dentro del disco duro.
  • Cara: cada uno de los dos lados de un plato.
  • Cabeza: número de cabezales.
  • Pista: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
  • Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
  • Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque próximamente serán 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro.
El primer sistema de direccionamiento que se usó fue el CHS (cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo: LBA (direccionamiento lógico de bloques), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Éste es el que actualmente se usa.

CLASIFICACIÓN DE LOS DISCOS DUROS

  • IDE: Integrated Device Electronics ("Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta aproximadamente el 2004, el estándar principal por su versatilidad y asequibilidad. Son planos, anchos y alargados.
  • SCSI: Son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación. Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 milisegundos y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que posibilita una mayor velocidad de transferencia.
Archivo:Cilindro Cabeza Sector.svg

INTERFACES

  • SATA (Serial ATA): El más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. Existen tres versiones, SATA 1 con velocidad de transferencia de hasta 150 MB/s (hoy día descatalogado), SATA 2 de hasta 300 MB/s, el más extendido en la actualidad; y por último SATA 3 de hasta 600 MB/s el cual se está empezando a hacer hueco en el mercado. Físicamente es mucho más pequeño y cómodo que los IDE, además de permitir conexión en caliente.
  • SAS (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandosSCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión en caliente. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costes. Por lo tanto, las unidades SATA pueden ser utilizadas por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.

Archivo:SATA ports.jpg


por ejemplo los computadores de la nasa tiene memoria ram de 8terabytes.
este caso se explica la parte logica entre màs avanzanda y la mecanica habra sistema revolucionario. noticia sobre disco duro de mas rapida velocidad de trasferencias  de datos,de energia alterna aenergia continua,velocidad de rotacion mayor a 7200 rpm ,y latencia media.
Un        la   nueva supercomputadora de la Administración Nacional de Aeronáutica y el Espacio de Esu.s.a(NASA), dotada de 10.240 microprocesadores, se ha revelado como la más veloz del mundo.
De acuerdo con sus creadores, la empresa Silicon Graphics Inc., el ingenio, denominado Project Col  columbia -llamado así por el trasbordador espacial que se desintegró en el 2003-, fue capaz dede trabajar con solo 16 de sus 20 módulos instalados a una velocidad sostenida de 42,7 terabytes.

Scott Hubbard, director del Centro de Investigación Ames, donde esta instalada la máquina, "si uno pudiera realizar un cálculo por segundo en forma manual, tardaría un millón de años en hacer lo que hace este sistema logra en un segundo".

El “racimo” de 20 computadoras que funcionan como si fueran una sola será usado para acelerar el diseño de naves espaciales, para la investigación meteorológica y para otros estudios. Fue construido en sólo 120 días.

La computadora que hasta ahora ostentaba el récord, la japonesa el Earth Simulator "solo" alcanza los 35,86 terabytes.

Oficialmente, hasta el próximo mes no se reconocerá al Project Columbia como la más rápida, pues es cuando se publicará la próxima la lista semestral del Top500 Project.

Las marcas de velocidad representó un asunto espinoso para la industria norteamericana desde junio del 2002, cuando un sistema fabricado fuera del país encabezó la lista de supercomputadoras realizada por un grupo independiente, el cual verifica las aseveraciones sobre el desempeño.

La competencia por el primer lugar ha sido fiera. El mes pasado, IBM anunció los resultados de su Blue Gene, que tendría un desempeño sostenido de 36,01 terabytes. Dado que la computadora no está concluida, podría mejorar aún.

Tarjetas Graficas

NVIDIA: Es una multinacional estadounidense dedicada al diseño y fabricación de sistemas de procesamiento grafico, es uno de los mas importantes en la industria, su familia mas reconocida es la GeForce muy apetecida por su buen rendimiento en unidades de videojuegos, otra de sus fuertes familias la Quadro con excelentes prestaciones para diseño CAD o asistido por computador y una serie de modelos de la familia nForce para placas base.

ATI: Pertenece al gigante AMD desde el 2006, es una empresa dedicada al desarrollo de tarjetas graficas, algunas familias importantes como Radeon, su oferta se enfoco mas en el mercado de aceleradoras gracias y de multimedia.





Como funcionan:

Altavoces: es un sistema electroacústico es decir este sistema es excitado por una señal eléctrica y responde con una señal acústica; un altavoz para un sistema eléctrico representa una impedancia por ende disipa cierto nivel de potencia, esta es convertida a sonido y algunas perdidas por vibración mecánica al entorno. En su interior tiene un diafragma el cual vibra de acuerdo a la intensidad de corriente cuya señal análoga transporta el sonido. Se conecta a una fuente donde solo es necesario de dos canales que son los que llevan la señal eléctrica del audio, luego el equipo tiene una alimentación por separado que suple sus propias necesidades de energía, lo cual quiere decir que no basta la salida estéreo de la fuente para alimentarlo, esto solo es debido a que los altavoces entregan mas potencia acústica que unos audífonos por ejemplo.


Audífonos: este dispositivo igual que el anterior transforma la energía eléctrica que recibe en acústica, solo que lo hace a una escala inferior, por ende el consumo energético es menor, y no necesita tener una fuente de alimentación aparte de la que le suministra el canal estéreo de la fuente, algunos audífonos tienen en su cable un potenciómetro que hace posible incrementar o decrementar el nivel de audio, no es mas que una impedancia que cambia.


LIFO y FIFO

LIFO= Ultimo que entra, primero que sale; es una memoria de tipo pila, parecido a un almacenamiento vertical, lo ultimo que se almacena es lo primero que se puede acceder, el dato mas viejo es el primero que se ingreso.

FIFO= Primero que entra, primero que sale, es una memoria de tipo cola, de ahí el nombre a lo que se hace en los bancos; la información almacenada es extraída de acuerdo al orden en que fue guardada, esta memoria tiene una entrada y una salida por separado.

MEMORIA FLASH Y MEMORIA CACHE

Memoria Flash: es una tecnología de almacenamiento de datos que proviene de la tecnología EEPROM o doble EPROM, esta permite la lectura múltiple o escritura en diferentes posiciones al mismo tiempo, de aquí el nombre de flash, gracias al uso de impulsos eléctricos es de rendimiento superior que las EEPROM que solo permitía ser vista o leída en una sola posición.

Memoria cache: esta memoria no tiene información de primera sino que la va copiando a medida que se accede por primera vez para un uso póstumo, esto se hace para mejorar el desempeño de la maquina y rapidez de acceso; entonces los datos en el cache son duplicados de sus originales ya que para acceder a los primeros resulta mas costoso.


Interna: Tiene dos variantes una para datos y otra para instrucciones, vienen con el procesador junto a su sistema de control, por dar prestaciones a la CPU de primera mano, es muy rápida, pequeña y costosa.

Externa: Su uso fue primero que la interna, esta tiene su lugar en la placa base tiene su propio bus de comunicación y sistema de control aparte, filtra las llamadas de memoria antes de que vaya a RAM

COMO FUNCIONA

Mouse: Existes varios tipos, lo mas conocidos mecánicos, ópticos y laser; los primeros como lo muestra la imagen debían su funcionamiento a una bola de goma que interactuaba con dos rodillos que iban a un sensor de movimiento (encoder) estos otorgaban las coordenadas en 2D que hacían posible la ubicación del puntero del mouse sobre la pantalla, es decir con el movimiento van cambiando las coordenadas X y Y. En los ópticos se sustituyen la bolita y los encoder por un sistema de sensorica óptica que toma fotogramas y al compararlos determina la existencia de movimiento, es mas complejo pero mas eficiente desde el punto de vista de mantenimiento; los laser utilizan un laser para proyectar sobre la superficie, esto hace que tengan una fidelidad mayor y precisión.

Teclado: Un teclado es una matriz de contactos o pulsadores, que es un contacto que vuelve a su estado original, normalmente abierto o cerrado; tiene coordenadas X y Y, algo así como un ajedrez; un circuito especializado hace un barrido de manera perpetua sobre la matriz buscando los posibles contactos que han sido pulsados, al encontrar alguno este por defecto y según la coordenada sabe la ubicación de ese contacto a que carácter corresponde.

Micrófono: un micrófono es un dispositivo  sensible a la presión del aire, es decir al sonido, gracias a una membrana circular o diafragma en su interior que al percibir sonido este vibra y hace una variación de la corriente de salida; la señal de esta corriente es la que se puede interpretar como el sonido que luego es amplificada y filtrada para su emisión o transmisión.

Cámara de Video: Una cámara de video es una de fotografías solo que vive tomando muestras a una mayor velocidad; según el estándar de video puede ser de 24 o 30 fotogramas por segundo; en su interior la cámara divide el haz de luz en sus tres correspondientes, rojo, verde y azul, luego procesa cada color por separado y gracias a un circuito electrónico especializado genera una señal análoga en la cual esta modulado y codificado la información de la toma, si es digital se generan paquetes de datos que son enviados para difusión o almacenamiento; dependiendo del códec de fuente que se tenga es decir, por ejemplo MPEG-4 la cámara hace una codificación a este formato para luego transmitirlo y decodificarlo al otro lado.

Escáner: Son un periférico óptico que permite la fotografía en detalle de documentos, fotografías o cualquier superficie que quepa en el espacio del aparato, su funcionamiento es gracias a un sistema emisor y receptor de luz, la mayoría utiliza la tecnología CCD, que consiste en un circuito integrado especializado que tiene un funcionamiento fotoeléctrico, es decir de acuerdo a la luz el genera una corriente eléctrica, por lo general este circuito va armando una imagen de acuerdo al carrusel avanza por el área del escáner, es decir la imagen va siendo armada línea a línea por el CCD.




Ranuras AGP y PCI

AGP: Puerto Acelerador de Gráficos sus variantes de tamaño tiene que ver con la alimentación que este puerto provee y la versión.

AGP 3.3 V.

AGP 1.5 V.

AGP Universal.

AGP Pro 3.3 V.

AGP Pro 1.5 V.

AGP Pro Universal.

En la imagen se observa el tamaño de la ranura del puerto AGP dependiendo del tipo.

PCI 2.2= alimentación a 3.3 v. PCI 2.3= alimentación a 3.3v pero no a 5v.

PCI 3.0= Soporte de 5v excluido.

Mini PCI= es una ranura con formato PCI 2.2 solo para computadoras portátiles.


MEMORIA RAM

RAM son las siglas de random access memory, un tipo de memoria de ordenador a la que se puede acceder aleatoriamente; es decir, se puede acceder a cualquier byte de memoria sin acceder a los bytes precedentes. La memoria RAM es el tipo de memoria más común en ordenadores y otros dispositivos como impresoras.
La memoria de acceso aleatorio, es la memoria desde donde el procesador recibe las instrucciones y guarda los resultados. Es el área de trabajo para la mayor parte del software de un computador.[1] Existe una memoria intermedia entre el procesador y la RAM, llamada cache, pero ésta sólo es una copia (de acceso rápido) de la memoria principal (típicamente discos duros) almacenada en los módulos de RAM.


TÉRMINOS INFORMÁTICOS 

Tiempo de refresco o latencia: Se denominan latencias de una memoria RAM a los diferentes retardos producidos en el acceso a los distintos componentes de esta última. Estos retardos influyen en el tiempo de acceso de la memoria por parte de la CPU, el cual se mide en nanosegundos (10-9 s) .



Tiempo de acceso : que corresponde al intervalo de tiempo entre la solicitud de lectura/escritura y la disponibilidad de los datos.


Buffer de datos: El buffer es la parte de la memoria ram que utiliza el sistema operativo o algun software para realizar un trabajo o proceso mas rapido.


ESTRUCTURA FISICA



En origen, la memoria RAM se componía de hilos de cobre que atravesaban toroides de ferrita, la corriente polariza la ferrita. Mientras esta queda polarizada, el sistema puede invocar al procesador accesos a partes del proceso que antes (en un estado de reposo) no es posible acceder. En sus orígenes, la invocación a la RAM, producía la activación de contactores, ejecutando instrucciones del tipo AND, OR y NOT. La programación de estos elementos, consistía en la predisposición de los contactores para que, en una línea de tiempo, adquiriesen las posiciones adecuadas para crear un flujo con un resultado concreto. La ejecución de un programa, provocaba un ruido estruendoso en la sala en la cual se ejecutaba dicho programa, por ello el área central de proceso estaba separada del área de control por mamparas insonorizadas.Con las nuevas tecnologías, las posiciones de la ferrita se ha ido sustituyendo por, válvulas de vacío, transistores y en las últimas generaciones, por un material sólido dieléctrico. Dicho estado estado sólido dieléctrico tipo DRAM permite que se pueda tanto leer como escribir información.
un tipo de memoria a la que se puede acceder de forma aleatoria; esto es, se puede acceder a cualquier byte de la memoria sin pasar por los bytes precedentes.son volátiles, lo que significa que pueden perder su contenido cuando se desconecta la alimentación.

Proceso de carga en la memoria RAM:

Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas enmemoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la
memoria, ayuda a mejorar las prestaciones del sistema. La diferencia entre la RAM yotros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que laRAM es mucho más rápida, y se borra al apagar el ordenador.

Es una memoria dinámica, lo que indica la necesidad de “recordar” los datos ala memoria cada pequeños periodos de tiempo, para impedir que esta pierda lainformación. Eso se llama Refresco. Cuando se pierde la alimentación, la memoria pierde todos los datos. “Random Access”, acceso aleatorio, indica que cada posición de memoria puede ser leída o escrita en cualquier orden. Lo contrario seria el accesosecuencial, en el cual los datos tienen que ser leídos o escritos en un orden predeterminado.

Las memorias poseen la ventaja de contar con una mayor velocidad, mayor capacidad de almacenamiento y un menor consumo. En contra partida presentan el CPU, Memoria y Disco Duro.
Los datos de instrucciones cuando se carga un programa, se carga en memoria. (DMA)

El inconveniente es de que precisan una electrónica especial para su utilización, la función de esta electrónica es generar el refresco de la memoria. La necesidad de los refrescos de las memorias dinámicas se debe al funcionamiento de las mismas, ya que este se basa en generar durante un tiempo la información que contiene. Transcurrido este lapso, la señal que contenía la célula biestable se va perdiendo. Para que no ocurra esta perdida, es necesario que antes que transcurra el tiempo máximo que la memoria puede mantener la señal se realice una lectura del valor que tiene y se recargue la misma.
Es preciso considerar que a cada bit de la memoria le corresponde un pequeño condensador al que le aplicamos una pequeña carga eléctrica y que mantienen durante un tiempo en función de la constante de descarga. Generalmente el refresco de memoria se realiza cíclicamente y cuando esta trabajando el DMA. El refresco de la memoria en modo normal esta a cargo del controlador del canal que también cumple la función de optimizar el tiempo requerido para la operación del refresco.

Posiblemente, en más de una ocasión en el ordenador aparecen errores de en la memoria debido a que las memorias que se están utilizando son de una velocidad inadecuada que se descargan antes de poder ser refrescadas.
Las posiciones de memoria están organizadas en filas y en columnas. Cuando se quiere acceder a la RAM se debe empezar especificando la fila, después la columna y por último se debe indicar si deseamos escribir o leer en esa posición. En ese momento la RAM coloca los datos de esa posición en la salida, si el acceso es de lectura o coge los datos y los almacena en la posición seleccionada, si el acceso es de escritura.

La cantidad de memoria Ram de nuestro sistema afecta notablemente a las prestaciones, fundamentalmente cuando se emplean sistemas operativos actuales. En general, y sobretodo cuando se ejecutan múltiples aplicaciones, puede que la demanda de memoria sea superior a la realmente existente, con lo que el sistema operativo fuerza al procesador a simular dicha memoria con el disco duro (memoria virtual). Una buena inversión para aumentar las prestaciones será por tanto poner la mayor cantidad de RAM posible, con lo que minimizaremos los accesos al disco duro.

Los sistemas avanzados emplean RAM entrelazada, que reduce los tiempos de acceso mediante la segmentación de la memoria del sistema en dos bancos coordinados. Durante una solicitud particular, un banco suministra la información al procesador, mientras que el otro prepara datos para el siguiente ciclo; en el siguiente acceso, se intercambian los papeles.
Los módulos habituales que se encuentran en el mercado, tienen unos tiempos de acceso de 60 y 70 ns (aquellos de tiempos superiores deben ser desechados por lentos).

Es conveniente que todos los bancos de memoria estén constituidos por módulos con el mismo tiempo de acceso y a ser posible de 60 ns.
Hay que tener en cuenta que el bus de datos del procesador debe coincidir con el de la memoria, y en el caso de que no sea así, esta se organizará en bancos, habiendo de tener cada banco la cantidad necesaria de módulos hasta llegar al ancho buscado. Por tanto, el ordenador sólo trabaja con bancos completos, y éstos sólo pueden componerse de módulos del mismo tipo y capacidad. Como existen restricciones a la hora de colocar los módulos, hay que tener en cuenta que no siempre podemos alcanzar todas las configuraciones de memoria. Tenemos que rellenar siempre el banco primero y después el banco número dos, pero siempre rellenando los dos zócalos de cada banco (en el caso de que tengamos dos) con el mismo tipo de memoria. Combinando diferentes tamaños en cada banco podremos poner la cantidad de memoria que deseemos.


Tipos de memorias RAM: 
Añadir leyenda


DRAM:
Acrónimo de “Dynamic Random Access Memory”, o simplemente RAM ya que es la original, y por tanto la más lenta.
Usada hasta la época del 386, su velocidad de refresco típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, la más rápida es la de 70 ns. Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.

FPM (Fast Page Mode):
A veces llamada DRAM, puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia.
Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns. Es lo que se da en llamar la RAM normal o estándar. Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486). Para acceder a este tipo de memoria se debe especificar la fila (página) y seguidamente la columna. Para los sucesivos accesos de la misma fila sólo es necesario especificar la columna, quedando la columna seleccionada desde el primer acceso. Esto hace que el tiempo de acceso en la misma fila (página) sea mucho más rápido. Era el tipo de memoria normal en los ordenadores 386, 486 y los primeros Pentium y llegó a alcanzar velocidades de hasta 60 ns. Se
presentaba en módulos SIMM de 30 contactos (16 bits) para los 386 y 486 y en módulos de 72 contactos (32 bits) para las últimas placas 486 y las placas para Pentium.

EDO o EDO-RAM:
Extended Data Output-RAM. Evoluciona de la FPM. Permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
Mientras que la memoria tipo FPM sólo podía acceder a un solo byte (una instrucción o valor) de información de cada vez, la memoria EDO permite mover un bloque completo de memoria a la caché interna del procesador para un acceso más rápido por parte de éste. La estándar se encontraba con refrescos de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.

La ventaja de la memoria EDO es que mantiene los datos en la salida hasta el siguiente acceso a memoria. Esto permite al procesador ocuparse de otras tareas sin tener que atender a la lenta memoria. Esto es, el procesador selecciona la posición de memoria, realiza otras tareas y cuando vuelva a consultar la DRAM los datos en la salida seguirán siendo válidos. Se presenta en módulos SIMM de 72 contactos (32 bits) y módulos DIMM de 168 contactos (64 bits).

SDRAM:
Sincronic-RAM. Es un tipo síncrono de memoria, que, lógicamente, se sincroniza con el procesador, es decir, el procesador puede obtener información en cada ciclo de reloj, sin estados de espera, como en el caso de los tipos anteriores. Sólo se presenta en forma de DIMMs de 168 contactos; es la opción para ordenadores nuevos. SDRAM funciona de manera totalmente diferente a FPM o EDO. DRAM, FPM y EDO transmiten los datos mediante señales de control, en la memoria SDRAM el acceso a los datos esta sincronizado con una señal de reloj externa.

La memoria EDO está pensada para funcionar a una velocidad máxima de BUS de 66 Mhz, llegando a alcanzar 75MHz y 83 MHz. Sin embargo, la memoria SDRAM puede aceptar velocidades de BUS de hasta 100 MHz, lo que dice
mucho a favor de su estabilidad y ha llegado a alcanzar velocidades de 10 ns. Se presenta en módulos DIMM de 168 contactos (64 bits). El ser una memoria de 64 bits, implica que no es necesario instalar los módulos por parejas de módulos de igual tamaño, velocidad y marca

PC-100 DRAM:
Este tipo de memoria, en principio con tecnología SDRAM, aunque también la habrá EDO. La especificación para esta memoria se basa sobre todo en el uso no sólo de chips de memoria de alta calidad, sino también en circuitos impresos de alta calidad de 6 o 8 capas, en vez de las habituales 4; en cuanto al circuito impreso este debe cumplir unas tolerancias mínimas de interferencia eléctrica; por último, los ciclos de memoria también deben cumplir unas especificaciones muy exigentes. De cara a evitar posibles confusiones, los módulos compatibles con este estándar deben estar identificados así: PC100-abc-def.

BEDO (burst Extended Data Output):
Fue diseñada originalmente parasoportar mayores velocidades de BUS. Al igual que la memoria SDRAM, esta memoria es capaz de transferir datos al procesador en cada ciclo de reloj, pero no de forma continuada, como la anterior, sino a ráfagas (bursts), reduciendo, aunque no suprimiendo totalmente, los tiempos de espera del procesador para escribir o leer datos de memoria.

RDRAM (Direct Rambus DRAM):
Es un tipo de memoria de 64 bits que puede producir ráfagas de 2ns y puede alcanzar tasas de transferencia de 533MHz, con picos de 1,6 GB/s. Pronto podrá verse en el mercado y es posible que tu próximo equipo tenga instalado este tipo de memoria.

Es el componente ideal para las tarjetas gráficas AGP, evitando los cuellos de botella en la transferencia entre la tarjeta gráfica y la memoria de sistema durante el acceso directo a memoria (DIME) para el almacenamiento de texturas gráficas. Hoy en día la podemos encontrar en las consolas NINTENDO 64.

DDR SDRAM (Double Data Rate SDRAM o SDRAM-II):
Funciona a velocidades de 83, 100 y 125MHz, pudiendo doblar estas velocidades en la transferencia de datos a memoria. En un futuro, esta velocidad puede incluso llegar a triplicarse o cuadriplicarse, con lo que se adaptaría a los nuevos procesadores. Este tipo de memoria tiene la ventaja de ser una extensión de la memoria SDRAM, con lo que facilita su implementación por la mayoría de los fabricantes.

SLDRAM:
Funcionará a velocidades de 400MHz, alcanzando en modo doble 800MHz, con transferencias de 800MB/s, llegando a alcanzar 1,6GHz, 3,2GHz en modo doble, y hasta 4GB/s de transferencia. Se cree que puede ser la memoria a utilizar en los grandes servidores por la alta transferencia de datos.

ESDRAM:
Este tipo de memoria funciona a 133MHz y alcanza transferencias de hasta 1,6 GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hasta 3,2 GB/s.

La memoria FPM (Fast Page Mode) y la memoria EDO también se utilizan en tarjetas gráficas, pero existen además otros tipos de memoria DRAM, pero que SÓLO de utilizan en TARJETAS GRÁFICAS, y son los siguientes:

- MDRAM (Multibank DRAM) Es increíblemente rápida, con transferencias de hasta 1 GIGA/s, pero su coste también es muy elevado.
- SGRAM (Synchronous Graphic RAM) Ofrece las sorprendentes capacidades de la memoria SDRAM para las tarjetas gráficas. Es el tipo de memoria más popular en las nuevas tarjetas gráficas aceleradoras 3D.
- VRAM Es como la memoria RAM normal, pero puede ser accedida al mismo tiempo por el monitor y por el procesador de la tarjeta gráfica, para suavizar la presentación gráfica en pantalla, es decir, se puede leer y escribir en ella al mismo tiempo.
- WRAM (Window RAM) Permite leer y escribir información de la memoria al mismo tiempo, como en la VRAM, pero está optimizada para la presentación de un gran número de colores y para altas resoluciones de pantalla. Es un poco más económica que la anterior.
La arquitectura PC establece que los datos que constituyen una imagen a mostrar en el monitor no se mapeen en la RAM que podamos tener en la placa madre, sino en la memoria RAM que se encuentra en la propia tarjeta de vídeo.

Por tanto, para concluir contar que con la introducción de procesadores más rápidos, las tecnologías FPM y EDO empezaron a ser un cuello de botella. La memoria más eficiente es la que trabaja a la misma velocidad que el procesador. Las velocidades de la DRAM FPM y EDO eran de 80, 70 y 60 ns, lo cual era suficientemente rápido para velocidades inferiores a 66MHz. Para procesadores lentos, por ejemplo el 486, la memoria FPM era suficiente.

Con procesadores más rápidos, como los Pentium de primera generación, se utilizaban memorias EDO. Con los últimos procesadores Pentium de segunda y tercera generación, la memoria SDRAM es la mejor solución.

La memoria más exigente es la PC100 (SDRAM a 100 MHz), necesaria para montar un AMD K6-2 o un Pentium a 350 MHz o más. Va a 100 MHz en vez de los 66 MHZ usuales.

Tecnologías de memorias RAM: SIMMs y DIMMs:

Se trata de la forma en que se organizan los chips de memoria, del tipo que sean, para que sean conectados a la placa base del ordenador. Son unas placas alargadas con conectores en un extremo; al conjunto se le llama módulo. El número de conectores depende del bus de datos del microprocesador.

1. SIMM de 72 contactos, los más usados en la actualidad. Se fabrican módulos de 4, 8, 16,32 y 64 Mb.
2. SIMM EDO de 72 contactos, muy usados en la actualidad. Existen módulos de 4, 8, 16,32 y 64 Mb.
3. SIMM de 30 contactos, tecnología en desuso, existen adaptadores para aprovecharlas y usar 4 de estos módulos como uno de 72 contactos. Existen de 256 Kb, 512 Kb (raros), 1, 2 (raros), 4, 8 y 16 Mb.
4. SIPP, totalmente obsoletos desde los 386 (estos ya usaban SIMM mayoritariamente).
SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Su capacidad es de 256 Kb, 1 Mb ó 4 Mb. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco. Los SIMMs de 72 contactos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble degrande (64 bits). La capacidad habitual es de 1 Mb, 4 Mb, 8 Mb, 16, 32 Mb.
5. DIMMs, más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, Pentium II y Pentium III. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).

Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca). 

FUNCIONAMIENTO ELECTRONICO DE LAS IMPRESORAS


La elección del motor de impresión tiene un efecto substancial en los trabajos a los que una impresora está destinada. Hay diferentes tecnologías que tienen diferentes niveles de calidad de imagen, velocidad de impresión, coste, ruido y además, algunas tecnologías son inapropiadas para ciertos tipos de medios físicos (como papel carbón o transparencias).
Otro aspecto de la tecnología de impresión que es frecuentemente olvidado es la resistencia a la alteración: tinta líquida como de una cabeza de inyección de tinta son absorbidos por las fibras del papel, y por eso los documentos impresos con tinta líquida son más difíciles de alterar que los que están impresos por toner o tinta sólida, que no penetran por debajo de la superficie del papel.


Tóner

Las impresoras de láser e impresoras térmicas utilizan este método para adherir tóner al medio. Trabajan utilizando el principio Xerografíaque está funcionando en la mayoría de las fotocopiadoras: adhiriendo tóner a un tambor de impresión sensible a la luz, y utilizando electricidad estática para transferir el tóner al medio de impresión al cual se une gracias al calor y la presión. Las impresoras láser son conocidas por su impresión de alta calidad, buena velocidad de impresión y su bajo costo por copia; son las impresoras más comunes para muchas de las aplicaciones de oficina de propósito general. Son menos utilizadas por el consumidor generalmente debido a su alto coste inicial.
 Las impresoras láser están disponibles tanto en color como en monocromo. El advenimiento de láseres de precisión a precio razonable ha hecho a la impresora monocromática basada en tóner dominante en aplicaciones para la oficina. Otro tipo de impresora basada en tóner es la impresora LED la cual utiliza una colección de LEDs en lugar de láser para causar la adhesión del tóner al tambor de impresión. El tóner (del inglés, toner), también denominado tinta seca por analogía funcional con la tinta, es un polvo fino, normalmente de color negro, que se deposita en el papel que se pretende imprimir por medio de atracción electrostática. Una vez adherido el pigmento, éste se fija en el papel por medio de presión o calor adecuados. Debido a que en el proceso no intervienen diluyentes, originalmente se ha denominado Xerografía, del griego xeros que significa seco.



Inyección de tinta (Ink Jet)

Las impresoras de inyección de tinta (Ink Jet) rocían hacia el medio cantidades muy pequeñas de tinta, usualmente unos picolitros. Para aplicaciones de color incluyendo impresión de fotos, los métodos de chorro de tinta son los dominantes, ya que las impresoras de alta calidad son poco costosas de producir. Virtualmente todas las impresoras de inyección son dispositivos en color; algunas, conocidas como impresoras fotográficas, incluyen pigmentos extra para una mejor reproducción de la gama de colores necesaria para la impresión de fotografías de alta calidad (y son adicionalmente capaces de imprimir en papel fotográfico, en contraposición al papel normal de oficina).
Las impresoras de inyección de tinta consisten en inyectores que producen burbujas muy pequeñas de tinta que se convierten en pequeñísimas gotitas de tinta. Los puntos formados son el tamaño de los pequeños pixels. Las impresoras de inyección pueden imprimir textos y gráficos de alta calidad de manera casi silenciosa.
Existen dos métodos para inyectar la tinta:
  • Método térmico. Un impulso eléctrico produce un aumento de temperatura (aprox. 480 °C durante microsegundos) que hace hervir una pequeña cantidad de tinta dentro de una cámara formando una burbuja de vapor que fuerza su salida por los inyectores. Al salir al exterior, este vapor se condensa y forma una minúscula gota de tinta sobre el papel. Después, el vacío resultante arrastra nueva tinta hacia la cámara. Este método tiene el inconveniente de limitar en gran medida la vida de los inyectores, es por eso que estos inyectores se encuentran en los cartuchos de tinta.
  • Método piezoeléctrico. Cada inyector está formado por un elemento piezoeléctrico que, al recibir un impulso eléctrico, cambia de forma aumentando bruscamente la presión en el interior del cabezal provocando la inyección de una partícula de tinta. Su ciclo de inyección es más rápido que el térmico.
Las impresoras de inyección tienen un coste inicial mucho menor que las impresoras láser, pero tienen un coste por copia mucho mayor, ya que la tinta necesita ser repuesta frecuentemente. Las impresoras de inyección son también más lentas que las impresoras láser, además de tener la desventaja de dejar secar las páginas antes de poder ser manipuladas agresivamente; la manipulación prematura puede causar que la tinta (que está adherida a la página en forma liquida) se mueva.


Matriz de puntos (Dot-Matrix)

En el sentido general, muchas impresoras se basan en una matriz de píxeles o puntos que, juntos, forman la imagen más grande. Sin embargo, el término matriz o de puntos se usa específicamente para las impresoras de impacto que utilizan una matriz de pequeños alfileres para crear puntos precisos. Dichas impresoras son conocidas comomatriciales. La ventaja de la matriz de puntos sobre otras impresoras de impacto es que estas pueden producir imágenes gráficas además de texto. Sin embargo, el texto es generalmente de calidad más pobre que las impresoras basadas en impacto de tipos.
Algunas sub-clasificaciones de impresoras de matriz de puntos son las impresoras de alambre balístico y las impresoras de energía almacenada.
Las impresoras de matriz de puntos pueden estar basadas bien en caracteres o bien en líneas, refiriéndose a la configuración de la cabeza de impresión.
Las impresoras de matriz de puntos son todavía de uso común para aplicaciones de bajo costo y baja calidad como las cajas registradoras. El hecho de que usen el método de impresión de impacto les permite ser usadas para la impresión de documentos autocopiativos como los recibos de tarjetas de crédito, donde otros métodos de impresión no pueden utilizar este tipo de papel. Las impresoras de matriz de puntos han sido superadas para el uso general en computación.

UNIDAD DE CD


UNIDAD DE CD - ROM
La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas: hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.
El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.
Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.
En estas unidades, además, existe una toma para auriculares, y también pueder estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo.
Una característica básica de las unidades de CD-ROM es la velocidad de lectura que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.

CD - RW  (REGRABADORA)
Las unidades de CD-ROM son de sólo lectura. Es decir, pueden leer la información en un disco, pero no pueden escribir datos en él.
Una regrabadora puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En los discos regrabables es normalmente menor que en los discos que sólo pueden ser grabados una vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 o más megabytes (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).

UNIDAD DE DVD
 El nombre de este dispositivo hace referencia a la multitud de maneras en las que se almacenan los datos: DVD-ROM (dispositivo de lectura únicamente), DVD-R y DVD+R (solo pueden escribirse una vez), DVD-RW y DVD+RW (permiten grabar y borrar las veces que se quiera). También difieren en la capacidad de almacenamiento de cada uno de los tipos.

DVD ROM
Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM. Se diferencian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s.
Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimentación y tarjeta de sonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).


DVD RW
Puede leer y grabar y regrabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.

BLUE RAY
es un formato de disco óptico de nueva generación de 12 cm de diámetro (igual que el CD y el DVD) para vídeo de gran definición y almacenamiento de datos de alta densidad. Su capacidad de almacenamiento llega a 25 GB por capa, aunque Sony y Panasonic han desarrollado un nuevo índice de evaluación (i-MLSE) que permitiría ampliar un 33% la cantidad de datos almacenados, desde 25 a 33,4 GB por capa. Aunque otros apuntan que el sucesor del DVD no será un disco óptico, sino la tarjeta de memoria. No obstante, se está trabajando en el HVD o Disco holográfico versátil con 3,9 TB. El límite de capacidad en las tarjetas de formato SD/MMC está ya en 128 GB, teniendo la ventaja de ser regrabables al menos durante 5 años.
HD DVD
HD DVD ( High Density Digital Versatile Disc), traducido al español como disco versátil digital de alta densidad, fue un formato de almacenamiento óptico desarrollado como un estándar para el DVD de alta definición por las empresas Toshiba, Microsoft y NEC, así como por varias productoras de cine. Puede almacenar hasta 30 GB.
Archivo:IFA 2005 Toshiba HBS A 001 HD-DVD Player (Dual-Layer HD-DVD 30GB) and (DVD-HD-DVD-Twin-Disc 5GB 15GB) (by HDTVTotalDOTcom).jpg